uncategorized

Kakfa Consumer使用技巧

high-level consumer

一种high-level版本,比较简单不用关心offset, 会自动的读zookeeper中该Consumer group的last offset
不过要注意一些注意事项,对于多个partition和多个consumer

  • 如果consumer比partition多,是浪费,因为kafka的设计是在一个partition上是不允许并发的,所以consumer数不要大于partition数
  • 如果consumer比partition少,一个consumer会对应于多个partitions,这里主要合理分配consumer数和partition数,否则会导致partition里面的数据被取的不均匀
    最好partiton数目是consumer数目的整数倍,所以partition数目很重要,比如取24,就很容易设定consumer数目
  • 如果consumer从多个partition读到数据,不保证数据间的顺序性,kafka只保证在一个partition上数据是有序的,但多个partition,根据你读的顺序会有不同
  • 增减consumer,broker,partition会导致rebalance,所以rebalance后consumer对应的partition会发生变化
  • High-level接口中获取不到数据的时候是会block的
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    Properties props = new Properties();
    //必须要加,如果要读旧数据, 默认是lastest
    props.put("auto.offset.reset", "smallest");
    props.put("zookeeper.connect", "localhost:2181");
    props.put("group.id", "dashcam");
    props.put("zookeeper.session.timeout.ms", "400");
    props.put("zookeeper.sync.time.ms", "200");
    props.put("auto.commit.interval.ms", "1000");
    ConsumerConfig conf = new ConsumerConfig(props);
    ConsumerConnector consumer =
    kafka.consumer.Consumer.createJavaConsumerConnector(conf);
    String topic = "page_visits";
    Map<String, Integer> topicCountMap = new HashMap<String, Integer>();
    topicCountMap.put(topic, new Integer(1));
    Map<String, List<KafkaStream<byte[], byte[]>>> consumerMap =
    consumer.createMessageStreams(topicCountMap);
    List<KafkaStream<byte[], byte[]>> streams = consumerMap.get(topic);
    KafkaStream<byte[], byte[]> stream = streams.get(0);
    ConsumerIterator<byte[], byte[]> it = stream.iterator();
    while (it.hasNext()){
    System.out.println("message: " + new String(it.next().message()));
    }
  1. 查看消息consume情况
    1
    2
    3
    4
    5
    bin/kafka-run-class.sh kafka.tools.ConsumerOffsetChecker \
    --group clog-writer --zookeeper xxxxxx:2181
    Group Topic Pid Offset logSize Lag Owner
    clog-writer dashcam 0 52009776 52009861 85 writer-14599
    clog-writer dashcam.env 0 10381 10381 0 writer-1459

关键就是offset,logSize和Lag
这里以前读完了,所以offset=logSize,并且Lag=0

  1. 重置offset
    1
    2
    3
    4
    5
    6
    7
    8
    bin/kafka-run-class.sh kafka.tools.UpdateOffsetsInZK \
    earliest config/consumer.properties dashcam
    ## 然后在检查consumer的offset情况
    bin/kafka-run-class.sh kafka.tools.ConsumerOffsetChecker
    \--group clog-writer --zookeeper xxxxxx:2181
    Group Topic Pid Offset logSize Lag Owner
    clog-writer dashcam 0 0 52009861 52009861 writer-14599
    clog-writer dashcam.env 0 10381 10381 0 writer-1459

3个参数,
[earliest | latest],表示将offset置到哪里
consumer.properties ,这里是配置文件的路径
topic,topic名,这里是dashcam

可以看到offset已经被清0,Lag=logSize

low-level consumer

当然用这个接口是有代价的,即partition,broker,offset对你不再透明,需要自己去管理这些,并且还要handle broker leader的切换
使用SimpleConsumer的步骤:
首先,必须知道读哪个topic的哪个partition
遍历每个broker,取出该topic的metadata,然后再遍历其中的每个partition metadata,如果找到我们要找的partition就返回
根据返回的PartitionMetadata.leader().host()找到leader broker

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
private PartitionMetadata findLeader(List<String> a_seedBrokers,
int a_port, String a_topic, int a_partition) {
PartitionMetadata returnMetaData = null;
//遍历每个broker
for (String seed : a_seedBrokers) {
SimpleConsumer consumer = null;
try {
//创建Simple Consumer,
consumer = new SimpleConsumer(seed, a_port, 100000,
64 * 1024, "leaderLookup");
List<String> topics =Collections.singletonList(a_topic);
TopicMetadataRequest req = new TopicMetadataRequest(topics);
//发送TopicMetadata Request请求
kafka.javaapi.TopicMetadataResponse resp = consumer.send(req);
//取到Topic的Metadata
List<TopicMetadata> metaData = resp.topicsMetadata();
for (TopicMetadata item : metaData) {
//遍历每个partition的metadata
for(PartitionMetadata part : item.partitionsMetadata())
{
//确认是否是我们要找的partition
if (part.partitionId() == a_partition) {
returnMetaData = part;
break loop; //找到就返回
}
}
}
} catch (Exception e) {
System.out.println("Error communicating with Broker [" +
seed + "] to find Leader for [" + a_topic
+ ", " + a_partition + "] Reason: " + e);
} finally {
if (consumer != null) consumer.close();
}
}
return returnMetaData;
}

然后,找到负责该partition的broker leader,从而找到存有该partition副本的那个broker
request主要的信息就是Map

TopicAndPartition就是对topic和partition信息的封装
PartitionOffsetRequestInfo的定义
case class PartitionOffsetRequestInfo(time: Long, maxNumOffsets: Int)
其中参数time,表示where to start reading data,两个取值
kafka.api.OffsetRequest.EarliestTime(),the beginning of the data in the logs
kafka.api.OffsetRequest.LatestTime(),will only stream new messages

不要认为起始的offset一定是0,因为messages会过期,被删除

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
public long getLastOffset(SimpleConsumer consumer,
String topic, int partition, long whichTime, String clientName){
TopicAndPartition topicAndPartition =
new TopicAndPartition(topic, partition);
Map<TopicAndPartition, PartitionOffsetRequestInfo> requestInfo =
new HashMap<TopicAndPartition, PartitionOffsetRequestInfo>();
//build offset fetch request info
requestInfo.put(topicAndPartition,
new PartitionOffsetRequestInfo(whichTime, 1));
kafka.javaapi.OffsetRequest request =
new kafka.javaapi.OffsetRequest(requestInfo,
kafka.api.OffsetRequest.CurrentVersion(),
clientName);
//取到offsets
OffsetResponse response = consumer.getOffsetsBefore(request);
if (response.hasError()) {
System.out.println("Error fetching data Offset Data the" +
"Broker. Reason: "+response.errorCode(topic, partition) );
return 0;
}
//取到的一组offset
long[] offsets = response.offsets(topic, partition);
//取第一个开始读
return offsets[0];
}

再者,自己去写request并fetch数据
首先在FetchRequest上加上Fetch,指明topic,partition,开始的offset,读取的大小
如果producer在写入很大的message时,也许这里指定的1000000是不够的,会返回an empty message set,这时需要增加这个值,直到得到一个非空的message set。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
FetchRequest req = new FetchRequestBuilder()
.clientId(clientName)
.addFetch(a_topic, a_partition,
readOffset, 100000) // 1000000bytes
.build();
FetchResponse fetchResponse = consumer.fetch(req);
if (fetchResponse.hasError()) {
// See Error Handling
}
numErrors = 0;
long numRead = 0;
for (MessageAndOffset messageAndOffset :
fetchResponse.messageSet(a_topic, a_partition)) {
long currentOffset = messageAndOffset.offset();
// 因为对于compressed message,会返回整个block,所以可能包含old的message
if (currentOffset < readOffset) {
System.out.println("Found an old offset: "
+ currentOffset + " Expecting: " + readOffset);
continue;
}
readOffset = messageAndOffset.nextOffset(); // 获取下一个readOffset
ByteBuffer payload = messageAndOffset.message().payload();
byte[] bytes = new byte[payload.limit()];
payload.get(bytes);
System.out.println(String.valueOf(messageAndOffset.offset()) + ": "
+ new String(bytes, "UTF-8"));
numRead++;
}
if (numRead == 0) {
try {
Thread.sleep(1000);
} catch (InterruptedException ie) {
}
}

Error handling

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
if (fetchResponse.hasError()) {
numErrors++;
// Something went wrong!
short code = fetchResponse.errorCode(a_topic, a_partition);
System.out.println("Error fetching data from the Broker:"
+ leadBroker + " Reason: " + code);
if (numErrors > 5) break;
// 处理offset非法的问题,用最新的offset
if (code == ErrorMapping.OffsetOutOfRangeCode()) {
// We asked for an invalid offset.
// For simple case ask for the last element to reset
readOffset = getLastOffset(consumer,a_topic, a_partition,
kafka.api.OffsetRequest.LatestTime(), clientName);
continue;
}
consumer.close();
consumer = null;
// 更新leader broker
leadBroker = findNewLeader(leadBroker, a_topic, a_partition, a_port);
continue;
}

find new leader

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
private String findNewLeader(String a_oldLeader, String a_topic,
int a_partition, int a_port) throws Exception {
for (int i = 0; i < 3; i++) {
boolean goToSleep = false;
PartitionMetadata metadata =
findLeader(m_replicaBrokers,
a_port, a_topic, a_partition);
if (metadata == null) {
goToSleep = true;
} else if (metadata.leader() == null) {
goToSleep = true;
} else if (a_oldLeader.equalsIgnoreCase(metadata.leader().host())
&& i == 0) {
// first time through if the leader hasn't changed
// give ZooKeeper a second to recover
// second time, assume the broker did recover before failover,
// or it was a non-Broker issue
goToSleep = true;
} else {
return metadata.leader().host();
}
if (goToSleep) {
try {
Thread.sleep(1000);
} catch (InterruptedException ie) {
}
}
}
System.out.println("Unable to find new leader after Broker failure. " +
"Exiting");
throw new Exception("Unable to find new leader after Broker failure." +
"Exiting");
}